Fraunhofer-Gesellschaft

Publica

Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Tackling the Six Fundamental Challenges of Big Data in Research Projects by Utilizing a Scalable and Modular Architecture

 
: Freymann, Andreas; Maier, Florian; Schaefer, Kristian; Böhnel, Tom

:
Volltext urn:nbn:de:0011-n-6156314 (310 KByte PDF)
MD5 Fingerprint: c0e5ef2fee9002e7c769244bd6394a51
(CC) by-nc-nd
Erstellt am: 2.12.2020


Institute for Systems and Technologies of Information, Control and Communication -INSTICC-, Setubal:
5th International Conference on Internet of Things, Big Data and Security, IoTBDS 2020. Proceedings : Online Streaming, 7th - 9th May 2020
Setúbal: SciTePress, 2020
ISBN: 978-989-758-426-8
S.249-256
International Conference on Internet of Things, Big Data and Security (IoTBDS) <5, 2020, Online>
Bundesministerium für Verkehr und digitale Infrastruktur BMVI (Deutschland)
03EMF0103B; i-rEzEPT
intelligente rückspeisefähige Elektrofahrzeuge zur Eigenstrommaximierung und Primärregelleistungsmarkt-Teilnahme
Englisch
Konferenzbeitrag, Elektronische Publikation
Fraunhofer IAO ()

Abstract
Over the last decades the necessity for processing and storing huge amounts of data has increased enormously, especially in the fundamental research area. Beside the management of large volumes of data, research projects are facing additional fundamental challenges in terms of data velocity, data variety and data veracity to create meaningful data value. In order to cope with these challenges solutions exist. However, they often show shortcomings in adaptability, usability or have high licence fees. Thus, this paper proposes a scalable and modular architecture based on open source technologies using micro-services which are deployed using Docker. The proposed architecture has been adopted, deployed and tested within a current research project. In addition, the deployment and handling is compared with another technology. The results show an overcoming of the fundamental challenges of processing huge amounts of data and the handling of Big Data in research projects.

: http://publica.fraunhofer.de/dokumente/N-615631.html