• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. DirtNet: Visual Dirt Detection for Autonomous Cleaning Robots
 
  • Details
  • Full
Options
2020
Conference Paper
Title

DirtNet: Visual Dirt Detection for Autonomous Cleaning Robots

Abstract
Visual dirt detection is becoming an important capability of modern professional cleaning robots both for optimizing their wet cleaning results and for facilitating demand-oriented daily vacuum cleaning. This paper presents a robust, fast, and reliable dirt and office item detection system for these tasks based on an adapted YOLOv3 framework. Its superiority over state-of-the-art dirt detection systems is demonstrated in several experiments. The paper furthermore features a dataset generator for creating any number of realistic training images from a small set of real scene, dirt, and object examples.
Author(s)
Bormann, Richard  
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Wang, Xinjie
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Xu, Jiawen
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Schmidt, Joel
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Mainwork
IEEE International Conference on Robotics and Automation, ICRA 2020  
Conference
International Conference on Robotics and Automation (ICRA) 2020  
DOI
10.1109/ICRA40945.2020.9196559
Language
English
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Keyword(s)
  • robotic dirt detection

  • Autonomer Mobiler Roboter

  • Reinigungsroboter

  • Schmutzerkennung

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024