Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Ether lipid and sphingolipid expression patterns are estrogen receptor-dependently altered in breast cancer cells

: Hahnefeld, L.; Gruber, L.; Schömel, N.; Fischer, C.; Mattjus, P.; Gurke, R.; Beretta, M.; Ferreirós, N.; Geisslinger, G.; Wegner, M.-S.


The international journal of biochemistry & cell biology 127 (2020), Art. 105834
ISSN: 1357-2725
ISSN: 1878-5875
Fraunhofer IME ()

Identifying co-expression of lipid species is challenging, but indispensable to identify novel therapeutic targets for breast cancer treatment. Lipid metabolism is often dysregulated in cancer cells, and changes in lipid metabolism affect cellular processes such as proliferation, autophagy, and tumor development. In addition to mRNA analysis of sphingolipid metabolizing enzymes, we performed liquid chromatography time-of-flight mass spectrometry analysis in three breast cancer cell lines. These breast cancer cell lines differ in estrogen receptor and G-protein coupled estrogen receptor 1 status. Our data show that sphingolipids and non-sphingolipids are strongly increased in SKBr3 cells. SKBr3 cells are estrogen receptor negative and G-protein coupled estrogen receptor 1 positive. Treatment with G15, a G-protein coupled estrogen receptor 1 antagonist, abolishes the effect of increased sphingolipid and non-sphingolipid levels in SKBr3 cells. In particular, ether lipids are expressed at much higher levels in cancer compared to normal cells and are strongly increased in SKBr3 cells. Our analysis reveals that this is accompanied by increased sphingolipid levels such as ceramide, sphingadiene-ceramide and sphingomyelin. This shows the importance of focusing on more than one lipid class when investigating molecular mechanisms in breast cancer cells. Our analysis allows unbiased screening for different lipid classes leading to identification of co-expression patterns of lipids in the context of breast cancer. Co-expression of different lipid classes could influence tumorigenic potential of breast cancer cells. Identification of co-regulated lipid species is important to achieve improved breast cancer treatment outcome.