Fraunhofer-Gesellschaft

Publica

Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

High-power RF characterization of diamond schottky barrier diodes at X-band

 
: Konstantinou, X.; Herrera-Rodriquez, C.J.; Hardy, A.; Albrecht, J.D.; Grotjohn, T.; Papapolymerou, J.

:

Institute of Electrical and Electronics Engineers -IEEE-:
IEEE/MTT-S International Microwave Symposium, IMS 2020 : Virtual Event: 4 - 6 August 2020, Los Angeles
Piscataway, NJ: IEEE, 2020
ISBN: 978-1-7281-6815-9
ISBN: 978-1-7281-6816-6
S.297-300
International Microwave Symposium (IMS) <2020, Online>
Englisch
Konferenzbeitrag
Fraunhofer CCD ()

Abstract
This work focuses on the unique high-frequency power-handling capabilities of diamond Schottky Barrier Diodes (SBDs). We demonstrate the design, fabrication, and large-signal RF characterization, via active Load/Source-Pull (L/S-P), of a SBD on single-crystalline diamond (SCD). This is the first time a fully-integrated RF SBD has been fabricated and characterized via high-power impedance matching. The SBD was developed on a p-/p+ boron-doped SCD wafer. Active L/S-P was performed at 10 GHz for an input power (Pin) of 34 dBm, attaining an output power (Pout) of 33.3 dBm, yielding a loss of 0.7 dB under matching conditions and an RF power density of 375 W/mm2. These RF power levels are higher than those available in the literature for SBDs and show that diode large-signal characterization via active L-P can potentially play a significant role in the design of multipliers, rectifiers, and detectors that aim to deliver high Pout without thermal degradation.

: http://publica.fraunhofer.de/dokumente/N-614571.html