Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Acoustic Process Monitoring in Laser Beam Welding

: Schmidt, Leander; Römer, Florian; Böttger, David; Leinenbach, Frank; Straß, Benjamin; Wolter, Bernd; Stricker, Klaus; Seibold, Marc; Bergmann, Jean Pierre; Galdo, Giovanni del

Volltext urn:nbn:de:0011-n-6061297 (1.6 MByte PDF)
MD5 Fingerprint: 3f335f568d1ef720e7e6f15be5dc42ab
(CC) by-nc-nd
Erstellt am: 6.11.2020

Procedia CIRP 94 (2020), S.763-768
ISSN: 2212-8271
Conference on Photonic Technologies (LANE) <11, 2020, Online>
Fraunhofer-Gesellschaft FhG
025-601128; ATTRACT
Zeitschriftenaufsatz, Konferenzbeitrag, Elektronische Publikation
Fraunhofer IZFP ()
Fraunhofer IIS ()
structure-borne acoustic emissions; process monitoring; machine learning; laser beam welding; melt pool dynamic; seam imperfections

Structure-borne acoustic emission (AE) measurement shows major advantages regarding quality assurance and process control in industrial applications. In this paper, laser beam welding of steel and aluminum was carried out under varying process parameters (welding speed, focal position) in order to provide data by means of structure-borne AE and simultaneously high-speed video recordings. The analysis is based on conventionally (e.g. filtering, autocorrelation, spectrograms) as well as machine learning methods (convolutional neural nets) and showed promising results with respect to the use of structure-borne AE for process monitoring using the example of spatter formation.