Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Cyclic Water Storage Behavior of Doubly Thermoresponsive Poly(sulfobetaine)-Based Diblock Copolymer Thin Films

: Kreuzer, Lucas P.; Widmann, Tobias; Aldosari, Nawarah; Bießmann, Lorenz; Mangiapia, Gaetano; Hildebrand, Viet; Laschewsky, André; Papadakis, Christine M.; Müller-Buschbaum, Peter


Macromolecules 53 (2020), Nr.20, S.9108-9121
ISSN: 0024-9297
ISSN: 1520-5835
Deutsche Forschungsgemeinschaft DFG
Sachbeihilfe; LA/611-1
Zweifach und orthogonal schaltbare Blockcopolymere aus zwitterionischen und thermoresponsiven Blöcken Synthese und Strukturen in Lösung und im dünnen Film
Fraunhofer IAP ()
block copolymer; polyzwitterion; poly(sulfobetaine); doubly thermo-responsive thin film; LCST; UCST; cyclic swelling; neutron scattering

The cyclic swelling and collapse behavior of a doubly thermoresponsive diblock copolymer thin film, consisting of a zwitterionic poly(sulfobetaine), poly(N,N-dimethyl-N-(3-methacrylamidopropyl)-ammoniopropane sulfonate) (PSPP), and a nonionic poly(N-isopropylmethacrylamide) (PNIPMAM) block, is investigated in situ at three characteristic temperatures with time-of-flight neutron reflectometry. With increasing temperature, the thin film becomes less hydrophilic, which leads to a decreased but faster water uptake. This response of the block copolymers in the thin-film geometry differs greatly from their known aqueous solution behavior. In the cyclic experiments at constant temperature, the behavior is reproducible in terms of mesoscopic parameters such as swelling ratio and water content, even though Fourier transform infrared spectroscopy reveals altered swelling mechanisms, which are attributed to a complex interplay between different water species. Thus, the overall reduced hydrophilicity affects the overall swelling behavior of the thin film but not the hydration of particular functional groups of the diblock copolymer PSPP-b-PNIPMAM.