Fraunhofer-Gesellschaft

Publica

Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Semi-Lagrangian lattice Boltzmann method for compressible flows

 
: Wilde, D.; Krämer, A.; Reith, D.; Foysi, H.

:
Volltext ()

Physical Review. E 101 (2020), Nr.5, Art. 053306, 12 S.
ISSN: 1063-651X
ISSN: 1539-3755
ISSN: 2470-0045
ISSN: 2470-0053
ISSN: 1550-2376
Bundesministerium für Bildung und Forschung BMBF (Deutschland)
13FH156IN6
Deutsche Forschungsgemeinschaft DFG
FO 674/17-1
Englisch
Zeitschriftenaufsatz, Elektronische Publikation
Fraunhofer SCAI ()

Abstract
This work thoroughly investigates a semi-Lagrangian lattice Boltzmann (SLLBM) solver for compressible flows. In contrast to other LBM for compressible flows, the vertices are organized in cells, and interpolation polynomials up to fourth order are used to attain the off-vertex distribution function values. Differing from the recently introduced Particles on Demand (PoD) method [Dorschner, Bösch, and Karlin, Phys. Rev. Lett. 121, 130602 (2018)], the method operates in a static, nonmoving reference frame. Yet the SLLBM in the present formulation grants supersonic flows and exhibits a high degree of Galilean invariance. The SLLBM solver allows for an independent time step size due to the integration along characteristics and for the use of unusual velocity sets, like the D2Q25, which is constructed by the roots of the fifth-order Hermite polynomial. The properties of the present model are shown in diverse example simulations of a two-dimensional Taylor-Green vortex, a Sod shock tube, a two-dimensional Riemann problem, and a shock-vortex interaction. It is shown that the cell-based interpolation and the use of Gauss-Lobatto-Chebyshev support points allow for spatially high-order solutions and minimize the mass loss caused by the interpolation. Transformed grids in the shock-vortex interaction show the general applicability to nonuniform grids.

: http://publica.fraunhofer.de/dokumente/N-596440.html