Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Efficient surface-aware semi-global matching with multi-view plane-sweep sampling

: Ruf, Boitumelo; Pollok, Thomas; Weinmann, M.

Volltext (PDF; )

Stilla, U. ; International Society for Photogrammetry and Remote Sensing -ISPRS-:
PIA 19+MRSS 19, Photogrammetric Image Analysis & Munich Remote Sensing Symposium : Joint ISPRS conference, 18-20 September 2019, Munich, Germany
Istanbul: ISPRS, 2019 (ISPRS Annals IV-2/W7)
Workshop "Photogrammetric Image Analysis" (PIA) <2019, Munich>
Munich Remote Sensing Symposium (MRSS) <2019, Munich>
Konferenzbeitrag, Elektronische Publikation
Fraunhofer IOSB ()
depth estimation; Normal Map Estimation; Semi-Global-Matching; multi-view; Plane-Sweep Stereo; online processing; Oblique Aerial Imagery

Online augmentation of an oblique aerial image sequence with structural information is an essential aspect in the process of 3D scene interpretation and analysis. One key aspect in this is the efficient dense image matching and depth estimation. Here, the Semi-Global Matching (SGM) approach has proven to be one of the most widely used algorithms for efficient depth estimation, providing a good trade-off between accuracy and computational complexity. However, SGM only models a first-order smoothness assumption, thus favoring fronto-parallel surfaces. In this work, we present a hierarchical algorithm that allows for efficient depth and normal map estimation together with confidence measures for each estimate. Our algorithm relies on a plane-sweep multi-image matching followed by an extended SGM optimization that allows to incorporate local surface orientations, thus achieving more consistent and accurate estimates in areasmade up of slanted surfaces, inherent to oblique aerial imagery. We evaluate numerous configurations of our algorithm on two different datasets using an absolute and relative accuracy measure. In our evaluation, we show that the results of our approach are comparable to the ones achieved by refined Structure-from-Motion (SfM) pipelines, such as COLMAP, which are designed for offline processing. In contrast, however, our approach only considers a confined image bundle of an input sequence, thus allowing to perform an online and incremental computation at 1Hz–2Hz.