Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Characterization of a silicon carbide BCD process for 300°C circuits

: Abbasi, A.; Roy, S.; Murphree, R.; Rashid, A.-U.; Hossain, M.M.; Lai, P.; Fraley, J.; Erlbacher, T.; Chen, Z.; Mantooth, A.


Veliadis, Victor (ed.) ; Institute of Electrical and Electronics Engineers -IEEE-; IEEE Power Electronics Society:
7th IEEE Workshop on Wide Bandgap Power Devices and Applications, WiPDA 2019 : October 29-31, 2019, Raleigh, North Carolina
Piscataway, NJ: IEEE, 2019
ISBN: 978-1-7281-3760-5
ISBN: 978-1-7281-3761-2
ISBN: 978-1-7281-3762-9
Workshop on Wide Bandgap Power Devices and Applications (WiPDA) <7, 2019, Raleigh/NC>
Fraunhofer IISB ()
Bipolar; CMOS; high temperature; integrated circuits; LDMOS; silicon carbide; wide bandgap

This paper describes a silicon carbide (SiC) Bipolar-CMOS-DMOS (BCD) process technology and presents the corresponding characterization results. The process enables the design of integrated circuits (ICs) capable of high temperature operation and heterogeneous integration into SiC power modules. The paper showcases the cross-section of the triple-well, single metal layer SiC BCD process and details the key process challenges. Characterization results for NMOS, PMOS, LDMOS, and BJT structures are presented. DC output characteristics of the standard 1.5 μm NMOS and PMOS are shown for temperatures of 25°C and 300°C. The drain-to-source breakdown voltages observed for the LDMOS (at 1 nA leakage) is 178 V at 25°C. The integrated passives available in the process include N-diffusion resistors with a sheet resistance of approximately 1.2 kΩ/□ and poly-to-N-diffusion capacitors with 0.612 fF/μm 2 capacitance.