Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Entwicklung neuer Stärkederivate für die Anwendung als wasserbasierte Filmbildner in Farben und Lacken

Development of new starch derivatives for the application as water-based film formers in paints and varnishes
: Gabriel, Christina

Potsdam, 2019, XVIII, 160 S., XXXIV
Potsdam, Univ., Diss., 2019
Fraunhofer IAP ()
modifizierte Stärke; dispersion; Rheologie; Beschichtung

In the last few decades, the coating industry, like many other industries, has changed its thinking towards more environmentally friendly paints and varnishes. However, even new solutions are usually not based on biopolymers and, to an even lesser extent, on water-based coating systems made from renewable raw materials. This is the starting point of this work, which aimed to investigate whether the biopolymer starch has the potential to be a water-based film former for paints and varnishes. Based on established synthetic market products, the following criteria must be fulfilled: The aqueous dispersion must have a solid content of at least 30%, be processable at room temperature and have viscosities of 102-103 mPa s. The final coating must form a continuous film and have very good adhesion to a specific substrate, in this thesis glass. A combination of molecular degradation and chemical functionalisation was selected as the basis for the modification of the starch. Since it was not known what influence the type of starch, the chosen degradation reaction as well as different substituents could have on the dispersion production and its properties as well as on the coating properties, the structural parameters were investigated separately. The first part dealt with the oxidative degradation of potato and smooth pea starch by hypochlorite degradation (OCl-) and ManOx degradation (H2O2, KMnO4). With both degradation reactions comparable weight average molar masses (Mw) of 2·105-106 g/mol (SEC-MALS) could be synthesized. However, the selected reaction conditions led to the formation of gel particles during ManOx degradation. These were in the µm-range (DLS and cryo-REM measurements) and resulted in ManOx samples having significantly higher viscosities (c: 7.5%; 9-260 mPa·s) compared to OCl- samples (4-10 mPa·s) with shear-thinning behaviour and showing the properties of viscoelastic gels (G' > G''). Furthermore, they exhibited reduced hot water solubilities (95 °C, primarily: 70-99%). OCl- degradation led to more hydrophilic (carboxyl group content up to 6.1%; ManOx: up to 3.1%), after 95 °C treatment completely water-soluble degraded starches, which had Newtonian flow behaviour with properties of a viscoelastic liquid (G'' > G'). Compared to the ManOx products (10-20%), the OCl- samples could be processed to more concentrated dispersions (20-40%), which at th e same time allowed the restriction of application-relevant Mw to < 7·105 g/mol (concentration should be > 30%). In addition, only the OCl- samples of the potato starch led to transparent (all others were opaque) continuous coating films. Thus, the combination of OCl- degradation and potato starch stands out with regard to the final application. The second part included investigations on the influence of ester and hydroxyalkyl ether substituents on the basis of an industrially degraded potato starch (Mw: 1.2·105 g/mol), particularly on dispersion preparation, rheological properties of the dispersions and the coating properties in combination with glass substrates. For this purpose, esters and ethers with DS/MS values of 0.07-0.91 were synthesized. The derivatives could be prepared to water-based dispersions with concentrations of 30-45%, whereby a co-solvent, diethylene glycol monobutyl ether (DEGBE), had to be used for more hydrophobic derivatives. The solid content of both derivative classes decreased most of all with increasing alkyl chain length. The application-relevant viscosities (323-1240 mPa·s) tended to increase due to interactions with DS/MS and alkyl chain length. With regard to the coating properties, esters proved to be the preferred substituent class compared to ethers, since only the esters formed continuous, defect free and mostly transparent coating films which had excellent to very good adhesion (ISO class: 0 and 1) on glass. The majority of ethers formed brittle films. Based on the combination of the results from solvent exchange, rheological investig ations and additional surface tension measurements (30-61 mN/m), it could be concluded that probably missing or poor adhesion was primarily due to accumulated water in the coating films (visually: turbid or white), while the brittleness can probably be attributed to interactions (H-bridge interactions, hydrophobic interactions) between the polymers. Overall, the combination of potato starch based on OCl- degradation with Mw < 7·105 g/mol and an ester substituent seems to be a good choice for water-based dispersions with high solid concentrations (> 30%), good film formation and excellent adhesion to glass.