Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Enhanced Machine Learning Techniques for Early HARQ Feedback Prediction in 5G

: Strodthoff, N.; Göktepe, B.; Schierl, T.; Hellge, C.; Samek, W.


IEEE Journal on Selected Areas in Communications 37 (2019), Nr.11, S.2573-2587
ISSN: 0733-8716
Fraunhofer HHI ()

We investigate Early Hybrid Automatic Repeat re-Quest (E-HARQ) feedback schemes enhanced by machine learning techniques as a path towards ultra-reliable and low-latency communication (URLLC). To this end, we propose machine learning methods to predict the outcome of the decoding process ahead of the end of the transmission. We discuss different input features and classification algorithms ranging from traditional methods to newly developed supervised autoencoders. These methods are evaluated based on their prospects of complying with the URLLC requirements of effective block error rates below 10-5 at small latency overheads. We provide realistic performance estimates in a system model incorporating scheduling effects to demonstrate the feasibility of E-HARQ across different signal-to-noise ratios, subcode lengths, channel conditions and system loads, and show the benefit over regular HARQ and existing E-HARQ schemes without machine learning.