Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

An Adaptive Two-scale Image Fusion of Visible and Infrared Images

: Han, Xiyu; Lv, Tao; Song, Xiangyu; Nie, Ting; Liang, Huaidan; He, Bin; Kuijper, Arjan

Volltext (PDF; )

IEEE access 7 (2019), S.56341-56352
ISSN: 2169-3536
Zeitschriftenaufsatz, Elektronische Publikation
Fraunhofer IGD ()
image fusion; Infrared light; image processing; consistency; spatial data; Guiding Theme: Smart City; Research Area: Computer vision (CV)

In this paper, we proposed an adaptive two-scale image fusion method using latent low-rank representation (LatLRR). Firstly, both IR and VI images are decomposed into a two-scale representation using LatLRR to generate low-rank parts (the global structure) and saliency parts (the local structure). The algorithm denoises at the same time. Then, the guided filter is used in the saliency parts to make full use of the spatial consistency, which reduces artifacts effectively. With respect to the fusion rule of the low-rank parts, we construct adaptive weights by adopting fusion global-local-topology particle swarm optimization (FGLT-PSO) to obtain more useful information from the source images. Finally, the resulting image is reconstructed by adding the fused low-rank part and the fused saliency part. Experimental results validate that the proposed method outperforms several representative image fusion algorithms on publicly available datasets for infrared and visible image fusion in terms of subjective visual effect and objective assessment.