Fraunhofer-Gesellschaft

Publica

Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Thermal stability, fire performance, and mechanical properties of natural fibre fabric-reinforced polymer composites with different fire retardants

 
: Bachtiar, E.V.; Kurkowiak, K.; Yan, L.; Kasal, B.; Kolb, T.

:
Volltext ()

Polymers. Online resource 11 (2019), Nr.4, Art. 699, 16 S.
http://www.mdpi.com/journal/polymers
ISSN: 2073-4360
Englisch
Zeitschriftenaufsatz, Elektronische Publikation
Fraunhofer WKI ()
aluminum hydroxide; ammonium polyphosphate; flame retardant; limited oxygen index; natural flax fiber reinforcement; mechanical tensile test; Polymer Composite; thermogravimetric analysis (TGA); Underwriters Laboratories (UL)-94 test

Abstract
In this study, ammonium polyphosphate (APP) and aluminum hydroxide (ALH) with different mass contents were used as fire retardants (FRs) on plant-based natural flax fabric-reinforced polymer (FFRP) composites. Thermogravimetric analysis (TGA), limited oxygen index (LOI), and the Underwriters Laboratories (UL)-94 horizontal and vertical tests were carried out for evaluating the effectiveness of these FR treatments. Flat-coupon tensile test was performed to evaluate the effects of FR treatment on the mechanical properties of the FFRP composites. For both fire retardants, the results showed that the temperature of the thermal decomposition and the LOI values of the composites increased as the FR content increases. Under the UL-94 vertical test, the FFRP composites with 20% and 30% APP (i.e., by mass content of epoxy polymer matrix) were self-extinguished within 30 and 10 s following the removal of the flame without any burning drops, respectively. However, the mechanical tensile tests showed that the APP treated FFRP composites reduced their elastic modulus and strength up to 24% and 18%, respectively. Scanning electronic microscopic (SEM) for morphology examination showed an effective coating of the flax fibres with the FRs, which improved the flame retardancy of the treated composites.

: http://publica.fraunhofer.de/dokumente/N-543552.html