• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Technology forecasting using network data envelopment analysis use case: Electrical vehicles
 
  • Details
  • Full
Options
2018
Conference Paper
Title

Technology forecasting using network data envelopment analysis use case: Electrical vehicles

Abstract
The future is not predictable, is it? While of course no one can exactly foresee all events, we can learn from the past and extrapolate historic developments into the future, especially in the area of technology forecasting. Based on Technology Forecasting with Data Envelopment Analysis (TFDEA by Inman (2004)) and Network Data Envelopment Analysis (NDEA by Cook et al. (2010) describe the approach of Technology Forecasting with Network Data Envelopment Analysis (TFNDEA). While classical DEA only analyses a system's efficiency as a whole by considering in- and outputs, the Network DEA based approach provides the possibility to look inside a system and to determine the efficiency and development of the interdependent subcomponents. The TFNDEA approach is applied by this work to the use case of electric vehicles, a technology with extensive development in the last years and high expectations for the future. Based on datasets from Tudorie (2012) a test prediction is done for the year 2017, which can be verified with current data. Then the approach is used to calculate predictions for the year 2020, to provide a forecast of the development of electric vehicles.
Author(s)
Adjogble, Franck K.
Leyendecker, Nadja
Warschat, Joachim  
Fischer, Thomas  
Ardilio, Antonino  
Mainwork
Data envelopment analysis and performance measurement: Recent developments  
Conference
International Conference of Data Envelopment Analysis (DEA) 2018  
Language
English
Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024