Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Combined UV-Vis-absorbance and reflectance spectroscopy study of dye transfer kinetics in aqueous mixtures of surfactants

: Lopez, Carlos G.; Manova, Anna; Hoppe, Corinna; Dreja, Michael; Schmiedel, Peter; Job, Mareile; Richtering, Walter; Böker, Alexander; Tsarkova, Larisa A.


Colloids and surfaces. A 550 (2018), S.74-81
ISSN: 0927-7757
Fraunhofer IAP ()

We report an analytical approach to study the competitive processes of solubilisation in micelles and of adsorption onto hydrophobic surfaces of poorly soluble hydrophobic dyes. The method is demonstrated on model systems containing two sources of Disperse Red 60: a bulk powder and a donor red textile, with molecularly dissolved dye stabilised in an aqueous environment by mixed micelles of anionic and non-ionic surfactants. The process of dye transfer between a donor textile (red polyester), surfactant micelles and an acceptor textile (white polyamide) was quantified by a combination of colorimetric analyses. UV–Vis absorbance was used to follow the extraction of the dye and to evaluate the solubilisation capacity of the micellar solution. A calibration curve for textile reflectance versus the adsorbed dye was generated to quantify the mass of dye transferred onto the acceptor textile. A combination of both techniques allowed us to compare the amount of dye desorbed from the donor textile and adsorbed onto the acceptor textile as a function of time for systems undergoing exhaustion-solubilisation mechanisms and only solubilisation mechanism. Up to ≃10 min of the washing process, the released dye is predominantly solubilised in surfactant micelles. At later times, the adsorption of the dye on the hydrophobic surface is energetically favoured. The shift of the desorption equilibrium in the presence of the acceptor textile results in ≃30% increase in the release of the dye. The reported methodology provides direct comparative analysis between the solubilisation capacity of amphiphilic stabilisers and the tendency of the dye to adsorb on solid substrates, important for designing novel concepts of disperse dye solubilisation and dye transfer inhibition during textile washing.