Fraunhofer-Gesellschaft

Publica

Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

An MTConnect ontology for semantic industrial machine sensor analytics

 
: Alvanou, Glykeria; Lytra, Ioanna; Petersen, Niklas

:
Volltext urn:nbn:de:0011-n-5200261 (249 KByte PDF)
MD5 Fingerprint: b969db8e9ca7d7018b72ff5c35dc15be
Erstellt am: 1.12.2018


Debattista, J.:
4th Workshop on Managing the Evolution and Preservation of the Data Web (MEPDaW), the 2nd Workshop on Semantic Web solutions for large-scale biomedical data analytics (SeWeBMeDA), and the Workshop on Semantic Web of Things for Industry 4.0 (SWeTI) 2018. Proceedings. Online resource : Co-located with 15th European Semantic Web Conference, ESWC 2018; Heraklion, Crete, Greece, June 3rd-7th, 2018
Heraklion, 2018 (CEUR Workshop Proceedings 2112)
http://ceur-ws.org/Vol-2112/
S.56-62
Workshop on Managing the Evolution and Preservation of the Data Web (MEPDaW) <4, 2018, Heraklion>
Workshop on Semantic Web Solutions for Large-Scale Biomedical Data Analytics (SeWeBMeDA) <2, 2018, Heraklion>
Workshop on Semantic Web of Things for Industry 4.0 (SWeTI) <2018, Heraklion>
European Semantic Web Conference (ESWC) <15, 2018, Heraklion>
Bundesministerium für Verkehr und digitale Infrastruktur BMVI
19F2029I; LIMBO
Bundesministerium für Bildung und Forschung BMBF
01IS15054; Industrial Data Space
Englisch
Konferenzbeitrag, Elektronische Publikation
Fraunhofer IAIS ()
industry 4.0; MTConnect standard; industrial control system; Ontology; semantic technology

Abstract
The vision of moving towards more autonomous systems in the industrial domain requires the efficient use of information. The frequent absence of well described assets and the poorly structured and non-available live data is considered as one of the main roadblocks towards this future. This paper addresses the issues by creating an ontology for MTConnect standard. MTConnect provides the basis to describe machines , their device structure including sensors and their measurement values. The ontology is tested using live data and we further provided multiple queries to execute certain machine health tests.

: http://publica.fraunhofer.de/dokumente/N-520026.html