Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Structural and mutagenesis studies of the thiamine‐dependent, ketone‐accepting YerE from Pseudomonas protegens

: Hampel, Sabrina; Steitz, Jan-Patrick; Baierl, Anna; Lehwald, Patrizia; Wiesli, Luzia; Richter, Michael; Fries, Alexander; Pohl, Martina; Schneider, Gunter; Dobritzsch, Doreen; Müller, Michael


ChemBioChem 19 (2018), Nr.21, S.2283-2292
ISSN: 1439-4227
ISSN: 1439-7633
Fraunhofer IGB ()
asymmetric synthesis; biocatalysis; biosynthesis; C−C coupling; tertiary alcohols

A wide range of thiamine diphosphate (ThDP)-dependent enzymes catalyze the benzoin-type carboligation of pyruvate with aldehydes. A few ThDP-dependent enzymes, such as YerE from Yersinia pseudotuberculosis (YpYerE), are known to accept ketones as acceptor substrates. Catalysis by YpYerE gives access to chiral tertiary alcohols, a group of products difficult to obtain in an enantioenriched form by other means. Hence, knowledge of the three-dimensional structure of the enzyme is crucial to identify structure–activity relationships. However, YpYerE has yet to be crystallized, despite several attempts. Herein, we show that a homologue of YpYerE, namely, PpYerE from Pseudomonas protegens (59 % amino acid identity), displays similar catalytic activity: benzaldehyde and its derivatives as well as ketones are converted into chiral 2-hydroxy ketones by using pyruvate as a donor. To enable comparison of aldehyde- and ketone-accepting enzymes and to guide site-directed mutagenesis studies, PpYerE was crystallized and its structure was determined to a resolution of 1.55 Å.