Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Quantification of uncertainty in the mathematical modelling of a multivariable suspension strut using bayesian interval hypothesis-based approach

: Mallapur, Shashidhar; Platz, Roland


Pelz, P.F.:
Uncertainty in Mechanical Engineering III : Selected, peer-reviewed papers from the 3rd International Conference on Uncertainty in Mechanical Engineering, ICUME 2018, November 15th - 16th, 2018, Darmstadt
Durnten-Zurich: TTP, 2018 (Applied mechanics and materials 885)
ISBN: 978-3-0357-1310-7 (Print)
ISBN: 978-3-0357-2310-6
ISBN: 978-3-0357-3310-5
International Conference on Uncertainty in Mechanical Engineering (ICUME) <3, 2018, Darmstadt>
Fraunhofer LBF ()
Bayesian interval hypothesis; mathematical model; model validation; marginal likelihood; suspension strut; uncertainty

Mathematical models of a suspension strut such as an aircraft landing gear are utilized by engineers in order to predict its dynamic response under different boundary conditions. The prediction of the dynamic response, for example the external loads, the stress and the strength as well as the maximum compression in the spring-damper component aids engineers in early decision making to ensure its structural reliability under various operational conditions. However, the prediction of the dynamic response is influenced by model uncertainty. As far as the model uncertainty is concerned, the prediction of the dynamic behavior via different mathematical models depends upon various factors such as the model's complexity in terms of the degrees of freedom, material and geometrical assumptions, their boundary conditions and the governing functional relations between the model input and output parameters. The latter can be linear or nonlinear, axiomatic or empiric, time variant or time-invariant. Hence, the uncertainty that arises in the prediction of the dynamic response of the resulting different mathematical models needs to be quantified with suitable validation metrics, especially when the system is under structural risk and failure assessment. In this contribution, the authors utilize the Bayesian interval hypothesis-based method to quantify the uncertainty in the mathematical models of the suspension strut.