Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.


: Kolupaev, V.A.


Kolupaev, Vladimir, A.:
Equivalent stress concept for limit state analysis
Cham: Springer International Publishing, 2018 (Advanced structured materials 86)
ISBN: 978-3-319-73048-6 (Print)
ISBN: 978-3-319-73049-3 (Online)
ISBN: 3-319-73048-7
DOI: 10.1007/978-3-319-73049-3
Aufsatz in Buch
Fraunhofer LBF ()

In order to illustrate the application of the criteria and fitting of the parameters, some measurements from the literature are analyzed. At first, the measured data for
•gray cast iron (Coffin and Schenectady in J Appl Mech 17:233–248, 1950) [1],
•POM (poly(oxymethylene)) (Pae in J Mater Sci 12:1209–1214, 1977) [2],
•PVC (polyvinyl chloride) hard foam (Christensen et al. in Int J Solids Struct 39(4):973–982, 2002) [3], and
•concrete (Lee et al. in Nucl. Eng. Des. 227(2):143–153, 2004) [4]
are shown in (Altenbach et al. Plasticity of pressure-sensitive materials. Engineering Materials. Springer, Berlin, 2014) [5] and (Kolupaev et al. J Eng Mech (ASCE), 2017) [6]. The measured data for
•aluminum alloy (Naghdi, Rowley in J Mech Phys Solids 8:63–80, 1954) [7], (Naghdi et al. in Trans ASME J Appl Mech 6:201–209, 1958) [8],
•PA 6 (polyamide) (unpublished),
•EPP P 9240 (expandable polypropylene) hard foam (Münch, Mechanisches Kurzzeitverhalten von thermoplastischen Konstruktionsschaumstoffen unter mehrachsiger Beanspruchung, 2005) [9], and
•concrete (Tasuji in The behavior of plan concrete subject to biaxial stress, 1976) [10], (Tasuji et al. in ACI J Proc 75(7):306–312, 1978) [11], (Tasuji et al. in Mag Concr Res 31(109):217–224, 1979) [12]
are fitted below. In addition, the own experimental results for PMI (polymethacrylimide) hard foams are evaluated.