Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Application of additive manufactured tungsten carbide tool electrodes in EDM

: Uhlmann, Eckart; Bergmann, André; Bolz, Robert; Gridin, Witalij

Volltext ()

Procedia CIRP 68 (2018), S.86-90
ISSN: 2212-8271
Conference on Electro Physical and Chemical Machining <19, 2018, Bilbao>
Zeitschriftenaufsatz, Konferenzbeitrag, Elektronische Publikation
Fraunhofer IPK ()
EDM; die-sinking; SLM; additive manufacturing; tungsten carbide

Application fields of electrical discharge machining (EDM) are limited due to given process conditions. When producing structures of high aspect ratios or using multi-axis machining, removed particles assemble at the machining zone, leading to process instabilities. A promising approach to improve EDM process conditions is the utilization of flushing channels in the tool electrode. However, with increasing complexity of the electrode geometry and the local integration of the mentioned flushing channels, conventional electrode manufacturing reaches its limitations. By applying Selective Laser Melting (SLM), these limitations are eliminated. The appropriate integration of flushing channels, even for complicated electrode geometries, improves process conditions during EDM in a variety of applications, leading to a higher material removal rate VW and reduced tool wear ϑ compared to machining without flushing. Additionally, the number of required tool electrodes can be reduced, as SLM enables an efficient integration and miniaturization of all features in a single electrode. Of particular interest in the field of EDM is carbide. Because of its wear resistance and stability, it is an ideal electrode material, which is commonly applied in μEDM. Tungsten carbide-cobalt is representative for this group of materials, which is already used in tool manufacturing. Several tests show a general suitability of carbide tool electrodes made by SLM for EDM-processing. However, the SLM process parameters and the composition of the carbide-cobalt show significant impact to the EDM results. A lower proportion of cobalt leads to reduced material removal rates VW and rising tool wear.