Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Joint detection and online multi-object tracking

Paper presented at CVPR 2018, IEEE Conference on Computer Vision and Pattern Recognition, 18-22 June 2018, Salt Lake City, Utah
: Kieritz, Hilke; Hübner, Wolfgang; Arens, Michael

Volltext urn:nbn:de:0011-n-4973023 (808 KByte PDF)
MD5 Fingerprint: 2179359711768d6168195e3ec6c06eb4
Erstellt am: 26.6.2018

2018, 9 S.
Conference on Computer Vision and Pattern Recognition (CVPR) <2018, Salt Lake City/Utah>
Konferenzbeitrag, Elektronische Publikation
Fraunhofer IOSB ()

Most multiple object tracking methods rely on object detection methods in order to initialize new tracks and to update existing tracks. Although strongly interconnected, tracking and detection are usually addressed as separate building blocks. However both parts can benefit from each other, e.g. the affinity model from the tracking method can reuse appearance features already calculated by the detector, and the detector can use object information from past in order to avoid missed detection. Towards this end, we propose a multiple object tracking method that jointly performs detection and tracking in a single neural network architecture. By training both parts together, we can use optimized parameters instead of heuristic decisions over the track lifetime. We adapt the Single Shot MultiBox Detector (SSD)[14] to serve single frame detection to a recurrent neural network (RNN), which combines detections into tracks. We show initial prove of concept on the DETRAC[26] benchmark with competitive results, illustrating the feasibility of learnable track management. We conclude with a discussion of open problems on the MOT16[15] benchmark.