Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Numerical simulation of silicon heterojunction solar cells featuring metal oxides as carrier-selective contacts

: Meßmer, Christoph Alexander; Bivour, Martin; Schön, Jonas; Glunz, Stefan W.; Hermle, Martin

Postprint urn:nbn:de:0011-n-4915742 (1.1 MByte PDF)
MD5 Fingerprint: de8cd3eff8358f904a7af7e40c39cc48
© IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Erstellt am: 28.4.2018

IEEE Journal of Photovoltaics 8 (2018), Nr.2, S.456-464
ISSN: 2156-3381
ISSN: 2156-3403
European Commission EC
H2020-Low-cost, low-carbon energy supply; 727529; DISC
Double side contacted cells with innovative carrier-selective contacts
Bundesministerium für Wirtschaft und Technologie BMWi
0324141; SELEKTIV
Selektive Kontaktsysteme für hocheffiziente Siliziumsolarzellen
Zeitschriftenaufsatz, Elektronische Publikation
Fraunhofer ISE ()
inversion layer; simulation; a Si; fundamental; heterojunction; Solarzellen - Entwicklung und Charakterisierung; Photovoltaik; Silicium-Photovoltaik; Herstellung und Analyse von hocheffizienten Solarzellen

The applicability of different high (low) work function contact materials for the formation of alternative passivating and hole (electron) selective contacts is currently re-explored for silicon solar cells. To assist the engineering of those contacts, which is still in its infancy, numerical device simulations are used to improve knowledge regarding relevant heterojunction and thin film properties with the focus on metal oxide based hole contacts. The importance of 1) a high metal oxide work function for the induced c-Si pn-junction is shown. It is elucidated that for an efficient hole transport from this induced c-Si junction into the external electrode, via the buffer and the metal oxide, 2) the metal oxide's conduction band must be below the valence band of the buffer (or c-Si absorber) for direct band-to-band tunneling, or 3) bulk traps near the valence band edge of the buffer (or c-Si absorber) are needed for trap-assisted tunneling.