Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Multiobjective model predictive control of an industrial laundry

: Peitz, S.; Gräler, M.; Henke, C.; Hessel-von Molo, M.; Dellnitz, M.; Trächtler, A.

Volltext (PDF; )

Procedia Technology 26 (2016), S.483-490
ISSN: 2212-0173
International Conference on System-Integrated Intelligence (SysInt) <3, 2016, Paderborn>
Zeitschriftenaufsatz, Konferenzbeitrag, Elektronische Publikation
Fraunhofer IEM ()

In a wide range of applications, it is desirable to optimally control a system with respect to concurrent, potentially competing goals. This gives rise to a multiobjective optimal control problem where, instead of computing a single optimal solution, the set of optimal compromises, the so-called Pareto set, has to be approximated. When it is not possible to compute the entire control trajectory in advance, for instance due to uncertainties or unforeseeable events, model predictive control methods can be applied to control the system during operation in real time. In this article, we present an algorithm for the solution of multiobjective model predictive control problems. In an offline scenario, it can be used to compute the entire set of optimal compromises whereas in a real time scenario, one optimal compromise is computed according to an operator's preference. The results are illustrated using the example of an industrial laundry. A logistics model of the laundry is developed and then utilized in the optimization routine. Results are presented for an offline as well as an online scenario.