
Publica
Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten. Si solar cells with top/rear poly-Si contacts
| Institute of Electrical and Electronics Engineers -IEEE-: IEEE 43rd Photovoltaic Specialists Conference, PVSC 2016 : 5-10 June 2016, Portland, Or. Piscataway, NJ: IEEE, 2016 ISBN: 978-1-5090-2724-8 (Electronic) ISBN: 978-1-5090-2725-5 (Print on Demand) S.2421-2424 |
| Photovoltaic Specialists Conference (PVSC) <43, 2016, Portland/Or.> |
|
| Englisch |
| Konferenzbeitrag |
| Fraunhofer ISE () |
Abstract
Passivated contacts based on low-pressure chemical vapor deposited (LPCVD) heavily-doped poly-Si and a thin SiOx layer are explored for the application in an interdigitated back contact (IBC) solar cell. The poly-Si/SiOx contacts are realized by applying wet-chemically grown SiOx tunnel layers and amorphous Si (a-Si) layers doped via ion implantation that are subsequently transformed into poly-Si/SiOx contacts by a high temperature step. The impact of doping species, ion dose, and poly-Si thickness on the surface passivation of such contacts is studied. Excellent J0 values down to 4.5 fA/cm2 were measured for n+ poly-Si contacts, while J0 values of 22 fA/cm2 were obtained for p+-poly-Si contacts. Solar cells with top/rear poly-Si contacts were processed and Voc values up to 709 mV and FF values above 81% were measured. Furthermore, the upper bound for the parasitic absorption losses in 10-40 nm thick poly-Si films was quantified to be about 0.5 mA/cm2 per 10 nm poly-Si layer thickness.