Fraunhofer-Gesellschaft

Publica

Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Assuring data quality by placing the user in the loop

 
: El Bekri, Nadia; Peinsipp-Byma, Elisabeth

:
Volltext urn:nbn:de:0011-n-4263687 (286 KByte PDF)
MD5 Fingerprint: 4940732f72cc5e5c31a1f011e9617915
Erstellt am: 20.12.2016


Arabnia, H.R. ; Institute of Electrical and Electronics Engineers -IEEE-:
International Conference on Computational Science and Computational Intelligence, CSCI 2016. Proceedings : 15-17 December 2016, Las Vegas, Nevada, USA
Piscataway, NJ: IEEE, 2016
ISBN: 978-1-5090-5510-4
ISBN: 978-1-5090-5511-1
S.468-471
International Symposium on Big Data and Data Science (ISBD) <2016, Las Vegas/Nev.>
International Conference on Computational Science and Computational Intelligence (CSCI) <2016, Las Vegas/Nev.>
Englisch
Konferenzbeitrag, Elektronische Publikation
Fraunhofer IOSB ()
data quality; user in the loop; data mining

Abstract
Advanced analytical techniques such as data mining, text mining or predictive analytics are concepts that are increasingly important in the area of discovering large data sets. Various business areas recognize that data in all formats and sizes can provide significant support for decision-making. Large amounts of data can contain explicit knowledge in form of patterns. Errors within the data can falsify extracted patterns. Data is useful if it is correct, organized and interpreted correctly. Data mining algorithms can help improve data quality. Algorithms can suggest hints on possible errors. Possible errors need a mechanism that decides whether the error is true or false. The solution this paper introduces is to integrate users in the quality assurance process for decision support systems. The user can assess whether an error is true or false.

: http://publica.fraunhofer.de/dokumente/N-426368.html