Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Analog-circuit NBTI degradation and time-dependent NBTI variability

An efficient physics-based compact model
: Giering, Kay-Uwe; Rott, G.; Rzepa, G.; Reisinger, H.; Puppala, Ajith Kumar; Reich, Torsten; Gustin, W.; Grasser, T.; Jancke, Roland

Postprint urn:nbn:de:0011-n-4147935 (283 KByte PDF)
MD5 Fingerprint: d0d2b580461e5cb265093a401588a0f8
© IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Erstellt am: 16.9.2016

Institute of Electrical and Electronics Engineers -IEEE-:
IEEE International Reliability Physics Symposium 2016 : April 17-21, 2016, Pasadena Convention Center
Piscataway, NJ: IEEE, 2016
ISBN: 978-1-4673-9136-8
ISBN: 978-1-4673-9137-5
International Reliability Physics Symposium (IRPS) <54, 2016, Pasadena/Calif.>
European Commission EC
FP7; 619234; MoRV
Modelling reliability under variability
Konferenzbeitrag, Elektronische Publikation
Fraunhofer IIS, Institutsteil Entwurfsautomatisierung (EAS) ()

We experimentally and theoretically investigate the NBTI degradation of pMOS devices due to analog stress voltages and thus go beyond existing NBTI studies for digital stress. As a result, we propose a physics-based compact model for analogstress NBTI which builds upon the extensive TCAD analysis of our ultra-short-delay experimental data. The numerical efficiency of the compact model allows its direct coupling to electric circuit simulators and permits to accurately account for NBTI degradation already during circuit design. Our model enables the calculation of the time-dependent NBTI variability of single device and of circuit performance parameters. We demonstrate our NBTI model on an operational amplifier and calculate the mean drift and variability of its offset voltage.