Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Laser-assisted vacuum arc extreme ultraviolet source. A comparison of picosecond and nanosecond laser triggering

: Beyene, G.A.; Tobin, I.; Juschkin, L.; Hayden, P.; O'Sullivan, G.; Sokell, E.; Zakharov, V.S.; Zakharov, S.V.; O'Reilly, F.


Journal of Physics. D. Applied Physics 49 (2016), Nr.22, Art. 225201, 10 S.
ISSN: 0022-3727
ISSN: 1361-6463
Fraunhofer ILT ()

Extreme ultraviolet (EUV) light generation by hybrid laser-assisted vacuum arc discharge plasmas, utilizing Sn-coated rotating-disc-electrodes, was investigated. The discharge was initiated by localized ablation of the liquid tin coating of the cathode disc by a laser pulse. The laser pulse, at 1064 nm, was generated by Nd:YAG lasers with variable energy from 1 to 100 mJ per pulse. The impact of shortening the laser pulse from 7 ns to 170 ps on the EUV generation has been investigated in detail. The use of ps pulses resulted in an increase in emission of EUV radiation. With a fixed discharge energy of ~4 J, the EUV conversion efficiency tends to plateau at ~2.4  ±  0.25% for the ps laser pulses, while for the ns pulses, it saturates at ~1.7  ±  0.3%. Under similar discharge and laser energy conditions, operating the EUV source with the ps-triggering resulted also in narrower spectral profiles of the emission in comparison to ns-triggering. The results indicate an advantage in using ps-triggering in laser-assisted discharges to produce brighter plasmas required for applications such as metrology.