Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

EEG based stress monitoring

: Hou, X.; Liu, Y.; Sourina, O.; Eileen, T.Y.R.; Wang, L.; Mueller-Wittig, W.


Institute of Electrical and Electronics Engineers -IEEE-; IEEE Computer Society:
IEEE International Conference on Systems, Man, and Cybernetics, SMC 2015. Proceedings : Big Data Analytics for Human-Centric Systems, 9-12 October 2015, Kowloon, Hong Kong
Los Alamitos, Calif.: IEEE Computer Society Conference Publishing Services (CPS), 2015
ISBN: 978-1-4799-8696-5
ISBN: 978-1-4799-8697-2
International Conference on Systems, Man, and Cybernetics (SMC) <2015, Hong Kong>
Fraunhofer IDM@NTU ()

Everyone experiences stress in life. Moderate stress can be beneficial to human; however, excessive stress is harmful to the health. To monitor stress, different methods can be used. In this work, an algorithm for stress level recognition from Electroencephalogram (EEG) is proposed. To validate the algorithm, an experiment is designed and carried out with 9 subjects. A Stroop colour-word test is used as a stressor to induce 4 levels of stress, and the EEG data are recorded during the experiment. Different feature combinations and classifiers are proposed and analyzed. By combining fractal dimension and statistical features and using Support Vector Machine (SVM) as the classifier, four levels of stress can be recognized with an average accuracy of 67.06%, three levels of stress can be recognized with an accuracy of 75.22%, and two levels of stress can be recognized with an accuracy of 85.71%. The algorithm is integrated into the system CogniMeter for stress state monitoring. Stress level of the user is visualized on the meter in real time. The system can be applied for stress monitoring of air-traffic controllers, operators, etc.