## Publica

Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten. # Algebraic reasoning for the enhancement of data-driven building reconstructions

**Abstract**

Data-driven approaches for the reconstruction of buildings feature the flexibility needed to capture objects of arbitrary shape. To recognize man-made structures, geometric relations such as orthogonality or parallelism have to be detected. These constraints are typically formulated as sets of multivariate polynomials. For the enforcement of the constraints within an adjustment process, a set of independent and consistent geometric constraints has to be determined. Gröbner bases are an ideal tool to identify such sets exactly. A complete workflow for geometric reasoning is presented to obtain boundary representations of solids based on given point clouds. The constraints are formulated in homogeneous coordinates, which results in simple polynomials suitable for the successful derivation of Gröbner bases for algebraic reasoning. Strategies for the reduction of the algebraical complexity are presented. To enforce the constraints, an adjustment model is introduced, which is able to cope with homogeneous coordinates along with their singular covariance matrices. The feasibility and the potential of the approach are demonstrated by the analysis of a real data set.