Fraunhofer-Gesellschaft

Publica

Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

The Visual Object Tracking VOT2015 challenge results

 
: Kristan, Matej; Matas, Jiri; Leonardis, Ales; Felsberg, Michael; Cehovin, Luka; Fernandez, Gustavo; Vojir, Tomas; Häger, Gustav; Nebehay, Georg; Pflugfelder, Roman; Gupta, Abhinav; Bibi, Adel; Lukezic, Alan; Garcia-Martin, Alvaro; Saffari, Amir; Petrosino, Alfredo; Solis Montero, Andres; Varfolomieiev, Anton; Baskurt, Atilla; Zhao, Baojun; Ghanem, Bernard; Martinez, Brais; Lee, ByeongJu; Han, Bohyung; Wang, Chaohui; Garcia, Christophe; Zhang, Chunyuan; Schmid, Cordelia; Tao, Dacheng; Kim, Daijin; Huang, Dafei; Prokhorov, Danil; Du, Dawei; Yeung, Dit-Yan; Ribeiro, Eraldo; Shahbaz Khan, Fahad; Porikli, Fatih; Bunyak, Filiz; Zhu, Gao; Seetharaman, Guna; Kieritz, Hilke; Tuen Yau, Hing; Li, Hongdong; Qi, Honggang; Bischof, Horst; Possegger, Horst; Lee, Hyemin; Nam, Hyeonseob; Bogun, Ivan; Jeong, Jae-chan; Cho, Jae-il; Lee, Jae-Yeong; Zhu, Jianke; Shi, Jianping; Li, Jiatong; Jia, Jiaya; Feng, Jiayi; Gao, Jin; Young Choi, Jin; Kim, Ji-Wan; Lang, Jochen; Martinez, Jose M.; Choi, Jongwon; Xing, Junliang; Xue, Kai; Palaniappan, Kannappan; Lebeda, Karel; Alahari, Karteek; Gao, Ke; Yun, Kimin; Hong Wong, Kin; Luo, Lei; Ma, Liang; Ke, Lipeng; Wen, Longyin; Bertinetto, Luca; Pootschi, Mahdieh; Maresca, Mario; Danelljan, Martin; Wen, Mei; Zhang, Mengdan; Arens, Michael; Valstar, Michel; Tang, Ming; Chang, Ming-Ching; Haris Khan, Muhammad; Fan, Nana; Wang, Naiyan; Miksik, Ondrej; Torr, Philip H.S.; Wang, Qiang; Martin-Nieto, Rafael; Pelapur, Rengarajan; Bowden, Richard; Laganiere, Robert; Moujtahid, Salma; Hare, Sam; Hadfield, Simon; Lyu, Siwei; Li, Siyi; Zhu, Song-Chun; Becker, Stefan; Duffner, Stefan; Hicks, Stephen L.; Golodetz, Stuart; Choi, Sunglok; Wu, Tianfu; Mauthner, Thomas; Pridmore, Tony; Hu, Weiming; Hübner, Wolfgang; Wang, Xiaomeng; Li, Xin; Shi, Xinchu; Zhao, Xu; Mei, Xue; Shizeng, Yao; Hua, Yang; Li, Yang; Lu, Yang; Li, Yuezun; Chen, Zhaoyun; Huang, Zehua; Chen, Zhe; Zhang, Zhe; He, Zhenyu; Hong, Zhibin

:
Postprint urn:nbn:de:0011-n-3750922 (2.3 MByte PDF)
MD5 Fingerprint: 8de314584b0a89dbaf1042b3dccd2ae0
Erstellt am: 2.2.2016


IEEE International Conference on Computer Vision Workshop (ICCVW 2015) : Santiago, Chile 7-13 December 2015
Piscataway, NJ: IEEE, 2015
ISBN: 978-1-4673-9712-4 (print)
ISBN: 978-1-4673-9711-7 (electronic)
ISBN: 978-1-4673-8390-5
S.564-586
International Conference on Computer Vision Workshop (ICCVW) <2015, Santiago/Chile>
Englisch
Konferenzbeitrag, Elektronische Publikation
Fraunhofer IOSB ()
NAT

Abstract
The Visual Object Tracking challenge 2015, VOT2015, aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. Results of 62 trackers are presented. The number of tested trackers makes VOT 2015 the largest benchmark on shortterm tracking to date. For each participating tracker, a short description is provided in the appendix. Features of the VOT2015 challenge that go beyond its VOT2014 predecessor are: (i) a new VOT2015 dataset twice as large as in VOT2014 with full annotation of targets by rotated bounding boxes and per-frame attribute, (ii) extensions of the VOT2014 evaluation methodology by introduction of a new performance measure. The dataset, the evaluation kit as well as the results are publicly available at the challenge website.

: http://publica.fraunhofer.de/dokumente/N-375092.html