Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Visual component analysis

: Müller, W.; Alexa, M.

Deussen, O. ; European Association for Computer Graphics -EUROGRAPHICS-; IEEE Computer Society, Technical Committee on Visualization and Graphics; Association for Computing Machinery -ACM-, Special Interest Group on Graphics -SIGGRAPH-:
Data Visualization 2004. Proceedings of the Joint Eurographics - IEEE TCVG Symposium on Visualization, VisSym 2004
Aire-la-Ville: Eurographics Association, 2004
ISBN: 3-905673-07-X
Symposium on Visualization (VisSym) <6, 2004, Konstanz>
Fraunhofer IGD ()
visual data mining; information visualization

We propose to integrate information visualization techniques with factor analysis. Specifically, a principal direction derived from a principal component analysis (PCA) of the data is displayed together with the data in a scatterplot matrix. The direction can be adjusted to coincide with visual trends in the data. Projecting the data onto the orthogonal subspace allows determining the next direction. The set of directions identified in this way forms an orthogonal space, which represents most of the variation in the data. We call this process visual component analysis (VCA). Furthermore, it is quite simple to integrate VCA with clustering. The user fits poly-lines to the displayed data, and the poly-lines implicitly define clusters. Per-cluster projection leads to the definition of per-cluster components.