Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Long wavelength emitting GaInN quantum wells on metamorphic GaInN buffer layers with enlarged in-plane lattice parameter

: Däubler, J.; Passow, T.; Aidam, R.; Köhler, K.; Kirste, L.; Kunzer, M.; Wagner, J.


Applied Physics Letters 105 (2014), Nr.11, Art. 111111, 5 S.
ISSN: 0003-6951 (Print)
ISSN: 1077-3118
ISSN: 1931-9401 (online)
Fraunhofer IAF ()

Metamorphic (i.e., linear composition graded) GaInN buffer layers with an increased in-plane lattice parameter, grown by plasma-assisted molecular beam epitaxy, were used as templates for metal organic vapor phase epitaxy (MOVPE) grown GaInN/GaInN quantum wells (QWs), emitting in the green to red spectral region. A composition pulling effect was observed allowing considerable higher growth temperatures for the QWs for a given In composition. The internal quantum efficiency (IQE) of the QWs was determined by temperature and excitation power density dependent photoluminescence (PL) spectroscopy. An increase in IQE by a factor of two was found for green emitting QWs grown on metamorphic GaInN buffer compared to reference samples grown on standard GaN buffer layers. The ratio of room temperature to low temperature intensity PL of the red emitting QWs were found to be comparable to the PL efficiency of green emitting QWs, both grown on metamorphic GaInN buffers. The excitation density and well width dependence of the IQE indicate a reduction of the quantum confined Stark effect upon growth on GaInN buffer layers with increased in-plane lattice parameter.