Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Nanohybrid materials consisting of Poly[(3-aminobenzoic acid)-co-(3-aminobenzenesulfonic acid)-co-aniline] and multiwalled carbon nanotubes for immobilization of redox active cytochrome c

: Tanne, J.; Dietzel, B.; Scheller, F.W.; Bier, F.


Electroanalysis 26 (2014), Nr.4, S.732-738
ISSN: 1040-0397
ISSN: 1521-4109
Fraunhofer IBMT ()

The development of a new surface architecture for the efficient direct electron transfer of positively charged redox proteins is presented. For this reason different kinds of polyaniline terpolymers consisting of aminobenzoic acid (AB), aminobenzenesulfonic acid (ABS) and aniline (A) with different monomer ratios were synthesized. The P(AB-ABS-A) were grafted to the surface of multiwalled carbon nanotubes (MWCNTs). FTIR measurements prove the covalent binding to the carboxylic groups of the MWCNTs while conductivity tests show an increase in the conductivity of the nanohybrid in comparison to the polymers. The [MWCNT-P(AB-ABS-A)] nanohybrids were used for the immobilization of redox active cytochrome c (cyt.c). The positively charged protein can electrostatically interact with the negatively charged nanohybrid. Cyclic voltammetry (CV) shows an increase in the protein loading on [MWCNT-P(AB-ABS-A)] coupled to cysteamine modified gold electrodes in comparison to non-grafted MWCNTs. A further increase in the sulfonation degree of P(AB-ABS-A) leads to an enhanced current output of the modified electrodes. The redox activity of the polymer decreases after the immobilization of the cyt.c on the nanohybrid. For the first time polymers covalently grafted to the surface of MWCNTs are used in a biosensor.