Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Experimental comparison of two safety analysis methods and its replication

: Jung, Jessica; Höfig, Kai; Domis, Dominik; Jedlitschka, Andreas; Hiller, Martin


IEEE Computer Society; Institute of Electrical and Electronics Engineers -IEEE-:
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM 2013. Proceedings : 10-11 October 2013, Baltimore, Maryland
Los Alamitos, Calif.: IEEE Computer Society Conference Publishing Services (CPS), 2013
ISBN: 978-0-7695-5056-5 (Print)
International Symposium on Empirical Software Engineering and Measurement (ESEM) <7, 2013, Baltimore/Md.>
Fraunhofer IESE ()
model-driven development; Fault Tree Analysis (FTA); experiment; replication; avionics - safety measure; Component Fault Tree (CFT); Cassidian

(Background) Empirical Software Engineering (SE) strives to provide empirical evidence about the pros and cons of SE approaches. This kind of knowledge becomes relevant when the issue is whether to change from a currently employed approach to a new one or not. An informed decision is required and is particularly important in the development of safety-critical systems. For example, for the safety analysis of safety-critical embedded systems, methods such as Failure Mode and Effect Analysis (FMEA) and Fault Tree Analysis (FTA) are used. With the advent of model-based systems and software development, the question arises whether safety engineering methods should also be adopted. New technologies such as Component Integrated Fault Trees (CFT) come into play. Industry demands to know the benefits of these new methods over established ones such as Fault Trees (FT).
(Methods) For the purpose of comparing CFT and FT with regard to the capabilities of the safety analysis methods (such as quality of the results) and to the participants' rating of the consistency, clarity, and maintainability of the methods, we designed a comparative study as a controlled experiment using a within-subject design. The experiment was run with seven academic staff members working towards their PhD. The study was replicated with eleven domain experts from industry.
(Results) Although the analysis of the tasks' solutions showed that the use of CFT did not yield a significantly different number of correct or incorrect solutions, the participants rated the modeling capacities of CFT higher in terms of model consistency, clarity, and maintainability.
(Conclusion) From this first evidence, we conclude that CFT have the potential of being beneficial for companies looking for a safety analysis approach for projects using model-based development.