Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

An experimental methodology for the in-situ observation of the time-dependent dielectric breakdown mechanism in Copper/low-k on-chip interconnect structures

: Yeap, K.B.; Gall, M.; Sander, C.; Niese, S.; Liao, Z.; Ritz, Y.; Rosenkranz, R.; Mühle, U.; Gluch, J.; Zschech, E.; Aubel, O.; Beyer, A.; Hennesthal, C.; Hauschildt, M.; Talut, G.; Poppe, J.; Vogel, N.; Engelmann, H.-J.; Stauffer, D.; Major, R.; Warren, O.


Institute of Electrical and Electronics Engineers -IEEE-:
IEEE International Reliability Physics Symposium, IRPS 2013. Vol.1 : Monterey, California, USA, 14 - 18 April 2013
New York, NY: IEEE, 2013
ISBN: 978-1-4799-0112-8 (Print)
ISBN: 978-1-4799-0111-1 (Online)
ISBN: 978-1-4799-0113-5
International Reliability Physics Symposium (IRPS) <2013, Monterey/Calif.>
Fraunhofer IZFP, Institutsteil Dresden ( IKTS-MD) ()

This study captures the time-dependent dielectric breakdown kinetics in nanoscale Cu/low-k interconnect structures, applying in-situ transmission electron microscopy (TEM) imaging and post-mortem electron spectroscopic imaging (ESI). A 'tip-to-tip' test structure and an experimental methodology were established to observe the localized damage mechanisms under a constant voltage stress as a function of time. In an interconnect structure with partly breached barriers, in-situ TEM imaging shows Cu nanoparticle formation, agglomeration and movement in porous organosilicate glasses. In a flawless interconnect structure, in-situ TEM imaging and ESI mapping show close to no evidence of Cu diffusion in the TDDB process. From the ESI mapping, only a narrow Cu trace is found at the SiCN/OSG interface. In both cases, when barriers are breached or still intact, the initial damage is observed at the top interface of M1 between SiCN and OSG.