Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Active or passive fiber-chip-alignment: Approaches to efficient solutions

: Böttger, G.; Schröder, H.; Jordan, R.


Glebov, A.L. ; Society of Photo-Optical Instrumentation Engineers -SPIE-, Bellingham/Wash.:
Optoelectronic interconnects XIII : 3 - 6 February 2013, San Francisco, California, United States
Bellingham, WA: SPIE, 2013 (Proceedings of SPIE 8630)
ISBN: 978-0-8194-9399-6
Paper 863006
Conference "Optoelectronic Interconnects" <13, 2013, San Francisco/Calif.>
Fraunhofer IZM ()

High precision approaches for active and passive alignment and assembly on optoelectronic micro benches have been realized at Fraunhofer IZM for various material systems and different scales. The alignment and reliable mounting of optical subcomponents such as semiconductor laser and photo diodes, micro lenses and micro prisms require far higher mounting and alignment accuracies than for micro-electronic parts. When connecting from silicon photonics chip level to single mode optical fibers, even higher precisions are called for (typically < 100 nm). Alignment and assembly commonly are performed on specialized lab equipment which needs manual operation, consuming a lot of time, with less possibilities for automation. To introduce a higher degree of automatized production, like it has become standard in large volume electronics, one can choose either active or passive alignment processes - or possibly a combination of both. In this article we will present examples of micr o-optic benches and optical interconnections that include alignment structures for passive alignment - where the accuracy lies in the components to be assembled, and mounting takes place on a less accurate machine ("fit into place"). But there is also a lot of progress on optical pick, measure and place machines that realize a flexible and fully automated active alignment using vision systems and activated components of less cost, with machine and process robustness for usability in industrial environments. As connecting elements, passive optical components like optical fibers are commonly used. These fragile and flexible elements pose additional challenges in secure picking, placing and fixing, at long lengths vs. small diameters. A very recent and specific approach to use more robust plastic optical fibers (POF) for very short and cost effective optical interconnects by means of wire bonding machines will be presented.