Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

A compact microscope setup for multimodal nonlinear imaging in clinics and its application to disease diagnostics

: Meyer, Tobias; Baumgartl, Martin; Gottschall, Thomas; Pascher, Torbjörn; Wuttig, Andreas; Matthäus, Christian; Romeike, Bernd; Brehm, Bernhard; Limpert, Jens; Tünnermann, Andreas; Guntinas-Lichius, Orlando; Dietzek, Benjamin; Schmitt, Michael; Popp, Jürgen


Analyst 138 (2013), Nr.14, S.4048-4057
ISSN: 0003-2654
ISSN: 1364-5528
Fraunhofer IOF ()

The past years have seen increasing interest in nonlinear optical microscopic imaging approaches for the investigation of diseases due to the method's unique capabilities of deep tissue penetration, 3D sectioning and molecular contrast. Its application in clinical routine diagnostics, however, is hampered by large and costly equipment requiring trained staff and regular maintenance, hence it has not yet matured to a reliable tool for application in clinics. In this contribution implementing a novel compact fiber laser system into a tailored designed laser scanning microscope results in a small footprint easy to use multimodal imaging platform enabling simultaneously highly efficient generation and acquisition of second harmonic generation (SHG), two-photon excited fluorescence (TPEF) as well as coherent anti-Stokes Raman scattering (CARS) signals with optimized CARS contrast for lipid imaging for label-free investigation of tissue samples. The instrument combining a laser source and a microscope features a unique combination of the highest NIR transmission and a fourfold enlarged field of view suited for investigating large tissue specimens. Despite its small size and turnkey operation rendering daily alignment dispensable the system provides the highest flexibility, an imaging speed of 1 megapixel per second and diffraction limited spatial resolution. This is illustrated by imaging samples of squamous cell carcinoma of the head and neck (HNSCC) and an animal model of atherosclerosis allowing for a complete characterization of the tissue composition and morphology, i.e. the tissue's morphochemistry. Highly valuable information for clinical diagnostics, e.g. monitoring the disease progression at the cellular level with molecular specificity, can be retrieved. Future combination with microscopic probes for in vivo imaging or even implementation in endoscopes will allow for in vivo grading of HNSCC and characterization of plaque deposits towards the detection of high risk plaques.