Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Automated universal chip platform for fluorescence based cellular assays

: Schmieder, F.; Schmieder, S.; Eger, R.; Friedrich, S.; Werner, A.; Danz, N.; Marx, U.; Sonntag, F.

Deutsche Gesellschaft für Biomedizinische Technik -DGBMT-; Univ. Freiburg/Brsg., Institut für Mikrosystemtechnik -IMTEK-:
BMT 2012, Biomedizinische Technik. Proceedings 46. DGBMT Jahrestagung : Jena, September 16 - 19, 2012
Berlin: De Gruyter, 2012 (Biomedizinische Technik 57, 2012, Supplement 1)
S.340-343, Track E
Deutsche Gesellschaft für Biomedizinische Technik (DGBMT Jahrestagung) <46, 2012, Jena>
Konferenzbeitrag, Zeitschriftenaufsatz
Fraunhofer IOF ()
Fraunhofer IWS ()

The advantage of cell based assays used as biosensors is the direct access to hardly obtainable parameters like toxicity, mutagenicity and pharmacological effectiveness. Within the last few years we established a micro fluidic platform including a peristaltic micro pump as well as several valves, manifolds and micro channels [1]. For optical online monitoring the micro fluidic system is bonded to a glass slide. Furthermore the biochip is fixed on an electrically heated support. The pneumatically actuated peristaltic pump as well as the temperature control is performed by a control device. For the fluorescence based online monitoring a robotic guided fluorescence measurement module was developed, which supports the detection of fluorescence in microtiter plates and microfluidic systems. This measurement module allows the fluorescence detection of two different excitation / detection wavelengths (480 / 530 nm and 570 / 620 nm) and was successfully characterised using EGFP and Rhodamine 6G. Additionally three cell based assays with bacterial, yeast and human cells were characterized.