Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Seed layer printed contact formation for highly doped boron emitters of n-type silicon solar cells with front side junction

: Richter, A.; Hörteis, M.; Benick, J.; Hermle, M.; Glunz, S.W.

Volltext urn:nbn:de:0011-n-2098328 (2.6 MByte PDF)
MD5 Fingerprint: 0a5b02d43c05e143bc92db532457fc62
Erstellt am: 10.8.2012

Hörteis, M.:
2nd Workshop on Metallization for Crystalline Silicon Solar Cells 2010. Proceedings : Status, trends and new directions. April 14th & 15th, 2010, Constance, Germany
Konstanz: Universität Konstanz, 2010
ISBN: 978-3-89318-058-5
Workshop on Metallization for Crystalline Silicon Solar Cells <2, 2010, Constance>
Konferenzbeitrag, Elektronische Publikation
Fraunhofer ISE ()
Solarzellen - Entwicklung und Charakterisierung; Silicium-Photovoltaik; Oberflächen: Konditionierung; Passivierung; Lichteinfang; Kontaktierung und Strukturierung; Herstellung und Analyse von hocheffizienten Solarzellen; Industrielle und neuartige Solarzellenstrukturen; Produktionsanlagen und Prozessentwicklung

Seed layer printed, fired and plated front side contacts are an industrial feasible high-efficiency technique for p-type silicon solar cells with a front side phosphorous-doped emitter. In this work we studied such a contact formation for boron-doped emitters of n-type silicon solar cells by applying a jet printed silver seed layer. The contact formation was investigated on shallow, industrial-type as well as on deep, high-efficiency-type emitters by means of specific contact resistance measurements for different firing conditions. Moreover, the emitter shunting has been studied by firing p+nn+ test structures at temperatures between 700 and 850 °C. Based on the observed results, p+nn+ solar cells have been fabricated, featuring the shallow boron emitter and an unpassivated, fully metalized phosphorous-doped back surface field. Conversion efficiencies up to 20.5% and fill factors of 80.8% could be achieved, demonstrating the effective contact formation to the boron-doped emitter on the device level.