Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Firing stable Al2O3/SiNx layer stack passivation for the front side boron emitter of n-type silicon solar cells

: Richter, A.; Henneck, S.; Benick, J.; Hörteis, M.; Hermle, M.; Glunz, S.W.

Volltext urn:nbn:de:0011-n-1581540 (725 KByte PDF)
MD5 Fingerprint: 3049c4ab6a6fc1cfd13a9c1286a6fcce
Erstellt am: 4.8.2012

European Commission:
25th European Photovoltaic Solar Energy Conference and Exhibition, EU PVSEC 2010. Proceedings : 5th World Conference on Photovoltaic Energy Conversion, 6-10 , September 2010, Valencia, Spain
München: WIP-Renewable Energies, 2010
ISBN: 3-936338-26-4
European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC) <25, 2010, Valencia>
European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC) <25, 2010, Valencia>
Konferenzbeitrag, Elektronische Publikation
Fraunhofer ISE ()
Solarzellen - Entwicklung und Charakterisierung; Silicium-Photovoltaik; Oberflächen: Konditionierung; Passivierung; Lichteinfang; Herstellung und Analyse von hocheffizienten Solarzellen; Industrielle und neuartige Solarzellenstrukturen; Produktionsanlagen und Prozessentwicklung

To apply an Al2O3/SiNx front side boron emitter passivation in combination with a fired contact formation on n-type silicon solar cells, both the electrical and the optical firing stability of this stack is indispensable. Thus, in this work we studied the stability of Al2O3/SiNx layer stacks for the passivation of boron emitters as a function of Al2O3 deposition parameters, as well as the thickness of the Al2O3 layers and the firing peak temperature, for atomic layer deposited Al2O3. The observed stability behavior was correlated with microscopic and structural observations, such as SEM images and FTIR measurements. Based on the results, p+nn+ solar cells were fabricated on 1 ohmcm FZ silicon with printed, fired and plated front contacts and a non-passivated, fully metalized phosphorous-doped back surface field. Confirmed conversion efficiencies up to 20.8% on small-area cells (4 cm2) and up to 19.6% on large-area cells (140.5 cm2) have been achieved. This demonstrates the potential of Al2O3/SiNx passivated front side boron emitters for n-type silicon solar cells with a high-temperature contact formation.