Fraunhofer-Gesellschaft

Publica

Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Molecular structure of the ideal solid propellant binder

Molekulare Struktur des idealen Festtreibstoff-Binders
 
: Stacer, R.G.

Fraunhofer-Institut für Chemische Technologie -ICT-, Pfinztal:
Technology of polymer compounds and energetic materials
Pfinztal: ICT, 1990 (Proceedings of the International Annual Conference of ICT 21)
ISSN: 0722-4087
pp.27.1-27.28
Fraunhofer-Institut für Chemische Technologie (Internationale Jahrestagung) <21, 1990, Karlsruhe>
English
Conference Paper
Fraunhofer ICT ()
composite; crosslink density; filler; friction; glass transition; mechanical property; molecular weight; nitrate ester; plasticizer; rheological property; solid propellant binder; solubility; structure molecular; viscoelasticity

Abstract
A study has been conducted to investigate the relationship between binder molecular structure and the mechanical/rheological properties of solid propellants. Beginning with the mechanical property requirements dictated by the motor grain operating conditions as well as rheological constraints imposed by available processing technology, the approach taken was to work backwards to obtain the ideal molecular structure of a solid propellant binder. Structural/processing requirements were determined from the demands of three typical rocket motor applications: space transfer, launch vehicle/ballistic missile, and tactical air-to-air. Three general formulation approaches to meet the demands of these applications were considered. These include traditional composite and nitrate ester plasticized formulation approaches, in addition to a hypothetical all-binder propellant. From each of these three formulation approaches, a range of polymer molecular characteristics were defined in terms of molecu lar weight, crosslink density, solubility parameter, chain stiffness, monomeric friction coefficient, volume fraction filler, and volume fraction plasticizer. Characterization data for ten polymeric binder systems are reported to show how their molecular architecture fits into the developed methodology.

: http://publica.fraunhofer.de/documents/PX-24940.html