• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Mesophase separation in polyelectrolyte-mixed micelle coacervates
 
  • Details
  • Full
Options
2008
Journal Article
Title

Mesophase separation in polyelectrolyte-mixed micelle coacervates

Abstract
Mesophase separation has been identified in a polycation/anionic-nonionic mixed micelle system formed by the coacervation of poly(diallyldimethylammoniumchloride)/sodium dodecylsulfate-Triton X-100 in 0.40 M NaCl. The resultant dense, optically clear fluid was studied by turbidity, dynamic light scattering (DLS), and rheology. The presence of two diffusion modes in DLS points to microscopic heterogeneity: coexistence of micelle-rich (dense) domains with micelle-poor (dilute) domains. With an increase in temperature above 20 °C, the turbidity rises rapidly along with the intensity of the slow mode. The concomitant decrease in the diffusivity of the slow mode signals an increase in the effective viscosity of the dense domain. With further increase in temperature, dramatic shear thinning is observed, and finally, macroscopic phase separation can be identified by centrifugation. At a temperature near that for quiescent phase separation, we observe shear-induced phase separation. We propose a mechanism to explain the connection between temperature- and shear-induced mesophase separation.
Author(s)
Dubin, P.L.
Li, Y.
Jaeger, W.
Journal
Langmuir. The ACS journal of surfaces and colloids  
DOI
10.1021/la702405d
Language
English
Fraunhofer-Institut für Angewandte Polymerforschung IAP  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024