Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Contribution of galactofuranose to the virulence of the opportunistic pathogen aspergillus fumigatus

: Schmalhorst, P.S.; Krappmann, S.; Vervecken, W.; Rohde, M.; Müller, M.; Braus, G.H.; Contreas, R.; Braun, A.; Bakker, H.; Routier, F.H.


Eukaryotic cell 7 (2008), No.8, pp.1268-1277
ISSN: 1535-9778
Journal Article
Fraunhofer ITEM ()
Galactofuranose; Aspergillus fumigatus; Virulence; Pathogen; drug targeting

The filamentous fungus Aspergillus fumigatus is responsible for a lethal disease called invasive aspergillosis that affects immunocompromised patients. This disease, like other human fungal diseases, is generally treated by compounds targeting the primary fungal cell membrane sterol. Recently, glucan synthesis inhibitors were added to the limited antifungal arsenal and encouraged the search for novel targets in cell wall biosynthesis. Although it is a major component of A. fumigatus cell wall and extracellular matrix, the biosynthesis and role of galactomannan are currently unknown. By a targeted gene deletion approach, we demonstrate that UDP-galactopyranose mutase, a key enzyme of galactofuranose metabolism, controls the biosynthesis of galactomannan and galactofuranose containing glycoconjugates. The glfA deletion mutant generated in this study is devoid of galactofuranose and displays attenuated virulence in a low dose mouse model of invasive aspergillosis that likely reflects the impaired growth of the mutant at mammalian body temperature. Furthermore, the absence of galactofuranose results in a thinner cell wall that correlates with an increased susceptibility to several antifungal agents. The UDP-galactopyranose mutase appears thus as an appealing adjunct therapeutic target in combination with other drugs against A. fumigatus. Its absence from mammalian cells offers indeed a considerable advantage to achieve therapeutic selectivity.