Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Elektrode fuer elektrochemische Farbstoffzelle und Verfahren zum Herstellen derselben

Electrode for dye-stabilized solar cells, has covering of titanium and titanium dioxide with thin, transparent conductive-strip base electrode on substrate
: Frach, P.; Gloess, D.; Klinkenberg, S.; Kopte, T.; Fahland, M.; Metzner, C.; Zywitzki, O.; Scheffel, B.

Frontpage ()

DE 102006041130 A: 20060901
DE 102006041130 A: 20060901
Patent, Electronic Publication
Fraunhofer FEP ()

(A1) Die Erfindung betrifft eine Elektrode und ein Verfahren zum Herstellen einer solchen Elektrode fuer eine elektrochemische Farbstoffzelle, umfassend eine Basiselektrode aus einem elektrisch leitfaehigen Material zum Herstellen eines flaechigen ohmschen Kontaktes und eine darauf aufgebrachte zusaetzliche Deckelektrode, dadurch gekennzeichnet, dass - die Deckelektrode im Wesentlichen aus Titan und/oder Titanoxid der Zusammensetzung TiOx (x = 0...2,2) besteht, - die Deckelektrode eine Dichte > 3 g/cm3 aufweist, - die Deckelektrode auf mindestens 95% der Oberflaeche der Basiselektrode als geschlossene Schicht ausgebildet ist, - die Deckelektrode zumindest an der der Basiselektrode abgewandten Seite halbleitende Eigenschaften aufweist.


DE 102006041130 A1 UPAB: 20080501 NOVELTY - The covering of the dye-stabilized solar cell (DSC) electrode is titanium and/or titanium dioxide of composition TiOx, where x = 0 ... 2.2. Its density exceeds 3g/cm3. It is constructed on at least 95% of the base electrode, as a sealed layer. On the side facing away from the base electrode, it has semiconducting properties. The base electrode is a transparent, electrical conductor on a transparent substrate. It is a good metallic conductor. It is a metal strip thicker than 20 mu m. It comprises tin oxide, preferably doped with indium or fluorine. DETAILED DESCRIPTION - The transparent electrical conductor is alternatively zinc oxide, doped with aluminum or boron. The base electrode is a transparent electrical conductor on a transparent glass, or on a plastic film. The metallic conductor of the base electrode is aluminum or copper, applied as a layer on an inorganic- or polymer substrate. The metal strip is aluminum, copper or titanium. The covering electrode includes crystalline titanium dioxide in the rutile phase, optionally mixed with anatase phase, at least on the side facing away from the base electrode. It includes a gradient in its phase composition. This starts with amorphous phase, at the boundary surface with the base electrode. It progresses to an increasingly-crystalline phase composition, with increasing spacing from the base electrode. The covering electrode has a stoichiometric gradient, commencing with pure titanium at the boundary surface and increasing in oxygen content with increasing distance from it. The covering electrode contains a doping element Z selected from N, C, Fe, Ni, W, Co, Zn, Y, Sn, Bi, Pt, Rh, Nb, Hf, Ta, Sb or Si. The covering electrode thickness is 5 nm to 10mu m. Techniques used in manufacture, include high-temperature oxidation, magnetron sputtering, reactive pulsed magnetron sputtering and deposition from plasma-assisted electron beam vaporization. AN INDEPENDENT CLAIM IS INCLUDED FOR the method of manufacture. USE - An electrode for an electrochemical dye cell. ADVANTAGE - Significantly, tests establish that the diode ideality factor of the DSC is significantly improved by the TiO2 covering electrode. When the light intensity is decreased by a factor of 10, the decrease of open circuit photovoltaic potential is 60-70 mv. This shows that the ideality factor of the diode is between 1 and 1.2 , compared with 1.2-1.4 for the unprotected base electrode. Photovoltaic performance characteristics are well maintained at lower levels of illumination, e.g. within interior spaces. Further performance indicators are discussed. Quantified tabulations of photo-voltaic potential Voc and short-circuit current density Jsc, are presented for various covering electrode structures. Values of cell efficiency are compared for different structures. Current densities are compared for differing intervals and percentages of solar exposure, for the different structures.