Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

An image-based approach to visual feature space analysis

: Schreck, Tobias; Schneidewind, Jörn; Keim, Daniel

Cunningham, S. ; European Association for Computer Graphics -EUROGRAPHICS-:
WSCG 2008, 16th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision. Communications Papers : Held at the University of West Bohemia, Campus Bory, Plzen - Bory, Czech Republic, February 4-7, 2008
Pilsen: Západoceská univerzita, 2008
ISBN: 978-80-86943-16-9
International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG) <16, 2008, Plzen, Czech Republic>
Conference Paper
Fraunhofer IGD ()
visual analytic; automatic feature selection; self-organizing map

Methods for management and analysis of non-standard data often rely on the so-called feature vector approach. The technique describes complex data instances by vectors of characteristic numeric values which allow to index the data and to calculate similarity scores between the data elements. Thereby, feature vectors often are a key ingredient to intelligent data analysis algorithms including instances of clustering, classification, and similarity search algorithms. However, identification of appropriate feature vectors for a given database of a given data type is a challenging task. Determining good feature vector extractors usually involves benchmarks relying on supervised information, which makes it an expensive and data dependent process.
In this paper, we address the feature selection problem by a novel approach based on analysis of certain feature space images. We develop two image-based analysis techniques for the automatic discrimination power analysis of feature spaces. We evaluate the techniques on a comprehensive feature selection benchmark, demonstrating the effectiveness of our analysis and its potential toward automatically addressing the feature selection problem.