Options
2022
Doctoral Thesis
Title
Yield Curves and Chance-Risk Classification. Modeling, Forecasting, and Pension Product Portfolios
Abstract
This dissertation consists of three independent parts: The yield curve shapes generated by interest rate models, the yield curve forecasting, and the application of the chance-risk classification to a portfolio of pension products. As a component of the capital market model, the yield curve influences the chance-risk classification which was introduced to improve the comparability of pension products and strengthen consumer protection. Consequently, all three topics have a major impact on this essential safeguard. Firstly, we focus on the obtained yield curve shapes of the Vasicek interest rate models. We extend the existing studies on the attainable yield curve shapes in the one-factor Vasicek model by analysis of the curvature. Further, we show that the two-factor Vasicek model can explain significantly more effects that are observed at the market than its one-factor variant. Among them is the occurrence of dipped yield curves. We further introduce a general change of measure framework for the Monte Carlo simulation of the Vasicek model under a subjective measure. This can be used to avoid the occurrence of a far too high frequency of inverse yield curves with growing time. Secondly, we examine different time series models including machine learning algorithms forecasting the yield curve. For this, we consider statistical time series models such as autoregression and vector autoregression. Their performances are compared with the performance of a multilayer perceptron, a fully connected feedforward neural network. For this purpose, we develop an extended approach for the hyperparameter optimization of the perceptron which is based on standard procedures like Grid and Random Search but allows to search a larger hyperparameter space. Our investigation shows that multilayer perceptrons outperform statistical models for long forecast horizons. The third part deals with the chance-risk classification of state-subsidized pension products in Germany as well as its relevance for customer consulting. To optimize the use of the chance-risk classes assigned by Produktinformationsstelle Altersvorsorge gGmbH, we develop a procedure for determining the chance-risk class of different portfolios of state-subsidized pension products under the constraint that the portfolio chance-risk class does not exceed the customer's risk preference. For this, we consider a portfolio consisting of two new pension products as well as a second one containing a product already owned by the customer as well as the offer of a new one. This is of particular interest for customer consulting and can include other assets of the customer. We examine the properties of various chance and risk parameters as well as their corresponding mappings and show that a diversification effect exists. Based on the properties, we conclude that the average final contract values have to be used to obtain the upper bound of the portfolio chance-risk class. Furthermore, we develop an approach for determining the chance-risk class over the contract term since the chance-risk class is only assigned at the beginning of the accumulation phase. On the one hand, we apply the current legal situation, but on the other hand, we suggest an approach that requires further simulations. Finally, we translate our results into recommendations for customer consultation.
Thesis Note
Zugl.: Kaiserslautern, TU, Diss., 2020
Publisher
Fraunhofer Verlag
Publishing Place
Stuttgart