• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Informed Machine Learning - A Taxonomy and Survey of Integrating Prior Knowledge into Learning Systems
 
  • Details
  • Full
Options
2023
Journal Article
Title

Informed Machine Learning - A Taxonomy and Survey of Integrating Prior Knowledge into Learning Systems

Abstract
Despite its great success, machine learning can have its limits when dealing with insufficient training data. A potential solution is the additional integration of prior knowledge into the training process which leads to the notion of informed machine learning. In this paper, we present a structured overview of various approaches in this field. We provide a definition and propose a concept for informed machine learning which illustrates its building blocks and distinguishes it from conventional machine learning. We introduce a taxonomy that serves as a classification framework for informed machine learning approaches. It considers the source of knowledge, its representation, and its integration into the machine learning pipeline. Based on this taxonomy, we survey related research and describe how different knowledge representations such as algebraic equations, logic rules, or simulation results can be used in learning systems. This evaluation of numerous papers on the basis of our taxonomy uncovers key methods in the field of informed machine learning.
Author(s)
Rueden, Laura von
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mayer, Sebastian  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Beckh, Katharina  orcid-logo
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Georgiev, Bogdan  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Giesselbach, Sven  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Heese, Raoul  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Kirsch, Birgit  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Walczak, Michal
Pfrommer, Julius  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Pick, Annika  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Ramamurthy, Rajkumar  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Garcke, Jochen  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Bauckhage, Christian  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Schuecker, Jannis
Journal
IEEE transactions on knowledge and data engineering  
Project(s)
ML2R  
Funder
Bundesministerium für Bildung und Forschung -BMBF-
Open Access
File(s)
Download (1.22 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.24406/publica-r-267826
10.1109/TKDE.2021.3079836
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Keyword(s)
  • machine learning

  • prior knowledge

  • expert knowledge

  • Informed

  • hybrid

  • Neuro-Symbolic

  • survey

  • Taxonomy

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024