Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Macroscopic quantum electrodynamics and density functional theory approaches to dispersion interactions between fullerenes

: Das, S.; Fiedler, J.; Stauffert, O.; Walter, M.; Buhmann, S.Y.; Presselt, M.

Fulltext (PDF; )

Physical chemistry, chemical physics : PCCP 22 (2020), No.40, pp.23295-23306
ISSN: 1463-9076
ISSN: 1463-9084
Bundesministerium für Bildung und Forschung BMBF (Deutschland)
Deutsche Forschungsgemeinschaft DFG
BU 1803/3-1
Deutsche Forschungsgemeinschaft DFG
Journal Article, Electronic Publication
Fraunhofer IWM ()
binding energy; dimers; electrodynamic; electronic structure; fullerenes; organic semiconductor materials; Photophysics; supramolecular chemistry; Van der Waals forces

The processing and material properties of commercial organic semiconductors, for e.g. fullerenes is largely controlled by their precise arrangements, specially intermolecular symmetries, distances and orientations, more specifically, molecular polarisabilities. These supramolecular parameters heavily influence their electronic structure, thereby determining molecular photophysics and therefore dictating their usability as n-type semiconductors. In this article we evaluate van der Waals potentials of a fullerene dimer model system using two approaches: (a) Density Functional Theory and, (b) Macroscopic Quantum Electrodynamics, which is particularly suited for describing long-range van der Waals interactions. Essentially, we determine and explain the model symmetry, distance and rotational dependencies on binding energies and spectral changes. The resultant spectral tuning is compared using both methods showing correspondence within the constraints placed by the different model assumptions. We envision that the application of macroscopic methods and structure/property relationships laid forward in this article will find use in fundamental supramolecular electronics.