Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Multi-modal Visual Withdrawal Detection for Inventory Management on a Robotic Care Cart

: Lindermayr, Jochen; Odabasi, Cagatay; Wohlleber, Timur; Graf, Birgit

Informationstechnische Gesellschaft -ITG-; Verband Deutscher Maschinen- und Anlagenbau e.V. -VDMA-, Frankfurt/Main; Verband der Elektrotechnik, Elektronik, Informationstechnik -VDE-:
ISR 2020, 52nd International Symposium on Robotics : December, 9-10, 2020, Online-Event. In conjunction with Automatica (abgesagt), December 8-11, 2020, Munich, CD-ROM
Berlin: VDE-Verlag, 2020
ISBN: 978-3-8007-5428-1 (Print)
ISBN: 978-3-8007-5429-8 (Online)
ISBN: 3-8007-5428-2
International Symposium on Robotics (ISR) <52, 2020, Online>
Conference Paper
Fraunhofer IPA ()
Robotik; inventory planning; Medizintechnik

We present a camera-based withdrawal detection system for inventory management on a robotic care cart. Navigating to the storage room for refilling the items takes time and energy for both robotic and manual care carts. Hence, tracking the inventory is crucial for efficiency. Currently, this task is performed by the nurses or care staff. Our approach aims at reducing the workload of the staff by warning them if the stock of an item is critically low. The extendable modular architecture combines different visual modalities such as hand tracking, rgb- and depth-based changes in drawer partitions and a motion cue, by fusing them for higher robustness. Our experimental results support the need for a detection system for such an application. Although the hand tracking modality provides the best accuracy among the other modalities, the fused result from different modalities outperforms regarding robustness.