Fraunhofer-Gesellschaft

Publica

Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Geophysical validation of temperature retrieved by the ESA processor from MIPAS/ENVISAT atmoshperic limb-emission measurements

 
: Ridolfi, M.; Blum, U.; Carli, B.; Catoire, V.; Ceccherini, S.; Claude, H.; Clercq, C. de; Fricke, K.H.; Friedl-Vallon, F.; Iarlori, M.; Keckhut, P.; Kerridge, B.; Lambert, J.-C.; Meijer, Y.J.; Mona, L.; Oelhaf, H.; Pappalardo, G.; Pirre, M.; Rizi, V.; Robert, C.; Swart, D.; Clarmann, T. von; Waterfall, A.; Wetzel, G.

:
Fulltext urn:nbn:de:0011-n-624100 (1.9 MByte PDF)
MD5 Fingerprint: 97fddc6e34ea4f3bb539c1abb52b025e
Created on: 07.09.2007


Atmospheric chemistry and physics 7 (2007), No.16, pp.4459-4487
ISSN: 1680-7316
ISSN: 1680-7324
English
Journal Article, Electronic Publication
Fraunhofer INT ()

Abstract
The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) has been operating since March 2002 onboard of the ENVIronmental SATellite of the European Space Agency (ESA). The high resolution (0.035 cmE-1 full width half maximum, unapodized) limb-emission measurements acquired by MIPAS in the first two years of operation have very good geographical and temporal coverage and have been re-processed by ESA with the most recent versions (4.61 and 4.62) of the inversion algorithms. The products of this processing chain are pressures at the tangent points and geolocated profiles of temperature and of the volume mixing ratios of six key atmospheric constituents: H2O, O3, HNO3, CH4, N2O and NO2. As for all the measurements made with innovative instruments and techniques, this data set requires a thorough validation. In this paper we present a geophysical validation of the temperature profiles derived from MIPAS measurements by the ESA retrieval algorithm. The validation is carried-out by comparing MIPAS temperature with correlative measurements made by radiosondes, lidars, in-situ and remote sensors operated either from the ground or stratospheric balloons.
The results of the intercomparison indicate that the bias of the MIPAS profiles is generally smaller than 1 or 2 K depending on altitude. Furthermore we find that, especially at the edges of the altitude range covered by the MIPAS scan, the random error estimated from the intercomparison is larger (typically by a factor of two to three) than the corresponding estimate derived on the basis of error propagation.
In this work we also characterize the discrepancies between MIPAS temperature and the temperature fields resulting from the analyses of the European Centre for Medium-range Weather Forecasts (ECMWF). The bias and the standard deviation of these discrepancies are consistent with those obtained when comparing MIPAS to correlative measurements; however, in this case the detected bias has a peculiar behavior as a function of altitude. This behavior is very similar to that observed in previous studies and is suspected to be due to vertical oscillations in the ECMWF temperature. The current understanding is that, at least in the upper stratosphere (above 10 hPa), these oscillations are caused by a discrepancy between model biases and biases of assimilated radiances from primarily nadir sounders.
This work is licensed under a Creative Commons License.
http://www.atmos-chem-phys-discuss.net/7/5439/2007/

: http://publica.fraunhofer.de/documents/N-62410.html